What is a File System? 

First, let's understand what a file system is. A file system can be thought of as the way your computer goes about managing the files that gets stored on your hard drive. Your computer has thousands upon thousands of files. If there were no organized way of managing them, your system would be infinitely slow, provided that it works at all. This is understandable if you just consider how much stuff you have piled in your office, and how much time is wasted finding stuff that's buried under a ton of paper. Now take that mess, and multiply it by a thousand. That is what your computer would be going through if an efficient file system didn't exist. And just like there are all kinds of people in the world who organize things differently in the office, there are many file systems out there with varying features. However, there are several key functions that no file system should be without: 

· Efficiently use the space available on your hard drive to store the necessary data 

· Catalog all the files on your hard drive so that retrieval is fast and reliable. 

· Provide methods for performing basic file operations, such as delete, rename, copy, and move. 

· Provide some kind of data structure that allows a computer to boot off the file system. 

There are of course other file systems that go beyond meeting basic requirements by providing additional functionality, such as compression, encryption, password/permissions, filestreams, etc. 
Computers use particular kinds of file systems to store and organize data on media, such as a hard drive, the CDs and DVDs in an optical drive or on a flash drive. Any place that a PC stores data is employing the use of some type of file system. 

The Microsoft Windows operating systems have always supported, and still do support, the File Allocation Table (FAT) file system. In addition to FAT, all Microsoft Windows operating systems since Windows NT support a newer file system called New Technology File System (NTFS).

Some other operating systems also take advantage of FAT and NTFS but many different kinds of file systems exist. 

FAT 
Note: This section is more technical in nature than the rest of the article. Feel free to skip if you'd like. But be warned that you'll miss some interesting tidbits about the FAT you probably never knew. 

So what is FAT, and how do file systems work? The answer is quite simple in fact. The space on your hard drive, at its most basic level, is divided into units called sectors. Each sector is 512 bytes. So if your hard drive had 10 Kilobytes worth of total disk space, that would mean it is divided into 20 sectors. But the file system doesn't directly deal with the hard drive on a sector by sector basis. Instead, it groups a bunch of sectors together into a cluster, and it deals with the cluster. These clusters are also called allocation units by DOS. So another way of thinking about this is to suppose that each sector on your hard disk is a person carrying a bag, where you can store 512 bytes of information into each bag. Now instead of numbering each person as 1,2,3, etc ... The file system first takes several people and put them into a group, and call that group 1. So if you had 400 people, and the file system decided to put 4 people to a group, then you'd have 100 groups. In other words, on a drive with 400 sectors (or roughly 200K of space), and with an allocation size of 4 sectors (or 2K), there would be 100 clusters. So then when the file system needs to access a particular sector, it would first find the cluster number of the sector, and then within that cluster, it would access that particular sector by its sector index. This is akin to saying to find a person, say Jon, I would find Jon's group number first, and then go to his group and look for him. 

All three of the file systems (FAT16, FAT32 and NTFS) work like this. So what is the difference between FAT16 and 32? The major difference lies in how much space each file system can handle and how efficiently the file system does it. The problem with file efficiency arises because each cluster on a hard disk can only store one file! That means each group can only be made to handle one item. To illustrate my point, consider the following situation: 

The file system decides to divide all the people into groups of 8 (we'll get into how this number of chosen later). Each of these 8 people has a bag that can store stuff. 

Now the file system hands the first group a huge box of pencils and says "store this." The eight people start to put the pencils in their bags, and after one fills up, they move on to the next. The box of pencils fills 7 bags. 

The file system tries to hand the group another small thing to put into the last 8th bag which is empty. But the group says "sorry, we can only handle one thing. You gave us one already." The file system says "fine, but you are wasting 12% of your space (1/8 = 0.125)" The group tells the file system "sorry, we can't help it." The file system moves on. 

Now the file system gives the next group of 8, only a single pencil to store. The group stores it and refuses to take anything else. The file system informs the group that they are wasting almost 100% of their storage space. But there is nothing they can do. 

These stories may seem silly, but they do get the point across, which is that as the size of the clusters increase, the amount of space you waste will increase. It is true that if you can make all your files precisely the same size as your cluster, then you'd have 0% waste. But that is not possible. Most typical files are not very big, and if the cluster size gets huge, then the waste can be quite alarming. 

So now the question becomes how does my computer figure out the size of each cluster? The answer is simple, take the size of your hard drive, and divide that by the number of clusters involved. So what I am saying is this: 

Cluster Size = Disk Space / Number of Clusters Possible

And since Cluster Size is directly proportional to wasted space (in other words, as the cluster size increases, the waste space also increases), we can see that what we want is a file system that can handle a large number of clusters. And this is where FAT16 and FAT32 differ. FAT32 can handle a lot more groups then FAT16 can. 

But why is that? The simple explanation is that FAT32 can count a lot higher than FAT16. As I said above, each cluster is numbered by the file system. FAT16 uses 16 bit numbers to count the clusters. That means FAT16 uses binary numbers of 16 digits. The consequence is that the highest FAT16 can count to is 2^16 - 1 (yes, it is in fact 2^16 - 1, because there are 2^16 digits between 0 and 2^16 - 1. Zero also has to count), or 65535. So there can only be 65535 clusters to each FAT 16 disk. What that means for you, is that as your hard drive gets huge, your cluster count remains the same, so your cluster size increases. 

But don't think for a minute that you can just indefinitely increase the size of each cluster. That can't happen. The reason is that every sector inside a group also has to be numbered. Each sector has an index number that is written inside a byte. A byte is 8 bits. What that means is that the number has to be less than 2^8 (255 to be exact). And since the way you decrement in computers is to go by powers of 2, that means you can only store a number as big as 2^7, or 128 sectors. So now let's do a little bit of math: 

You have a max of 65535 clusters, 

You have a max of 128 sectors per cluster 

You have 512 bytes per sector. 

That means your max FAT16 size is = 65535 * 128 * 512 = 4 GB 

Wait a second? That's not right! I thought the limit was 2GB? And I thought each cluster in FAT16 can be only 32K, not 64K! And you would be right. The problem is that 128 sectors * 512 bytes per sector is 65536, which is one more than a 16 bit number can handle. So again, we decrement to 64 sectors per cluster, which yields us 32K per cluster. And 32K per cluster * 65535 is roughly 2GB. 

File Systems: FAT, FAT16, FAT 32 

Now FAT32 solves this problem by removing the 65535 clusters per disk limitation. FAT32 now uses 32bit number, which is a number with 32 digits. That allows it to count much higher. And since it can handle a bigger number of clusters, its cluster size is much smaller than that of FAT16 for bigger disks. In fact, FAT32's maximum disk size is 2 Terabytes. 

To get this number, you take the total number of sectors addressable (and I do mean sectors), which would be 2^32 - 1, and multiple that by 512 bytes per sector. That's a whopping 2048 Gigabytes, or 2 Terabytes. At this point, some of you may be scratching your heads trying to figure out the inconsistencies in my explanation. The first item to address is that even though the file system accesses the sectors by a cluster count first, that still doesn't alleviate the need to number the sectors individually. Even in FAT16, the sectors are numbered. And that leads to the second concern some of you may have. Since FAT16 uses 16 bit numbers, doesn't that mean that there can be only 2^16 - 1 sectors? Wouldn't that translate into 32 megs? Yes. You are right. But unknown to most is the fact that since DOS 4.0, the underlying sector numbering had already been changed to a 32bit value! The limit placed on the disk size was purely due to the 16bit numbering of the clusters, and the limit of the numbering system for the sectors in each cluster, as discussed above. 

Ok, so we know what sectors and clusters are. But how does that get translated into files? That is where the File Allocation Table comes in. The FAT is a huge database that contains records of where each file is on the disk. In fact, it would not be too much of a stretch to just think of the FAT as a table with several columns that each record something about the files on the drive. Each record inside the FAT will take up 32 bytes of space. In other words, if I had 100 files on the computer, it would take the system roughly 3200 bytes to record all of that information into the FAT. Just for fun, let's take a look at what is stored in these 32 bytes: 

	Byte Range
	Info Stored

	1 to 8
	Filename

	9 to 11
	Extension

	12
	Attributes (i.e. read-only, archive, hidden)

	13 to 22
	Reserved bits for latter features

	23 to 24
	Time Written

	25 to 26
	Starting cluster

	29 to 32
	File Size


Interesting list isn't it? Some of the entries are self-explanatory. But there are two that are rather interesting. The first thing to look at is the Starting Cluster field. Some of you may have been wondering how the system translates cluster and sector indices into filenames and such. The answer is that for each file, there is a field in the FAT that indicates the first cluster of the file. The system would read that FAT entry and then find the starting cluster and read the file. Now the question is how does the system know when to stop reading? Furthermore, even before that, how does the system know where to read next after this cluster? The answer is that written within each cluster is the address of the next cluster that contains information from this file. So a computer reads the current cluster and checks to see if there are any other clusters after it. If there is, it skips to that cluster and reads it, and checks for the next one. This process repeats until it finds a cluster with no pointers. The CS majors reading this would recognize this as a Linked List implementation. 

The other interesting feature of this table is that each directory entry (record in the FAT) uses 4 bytes to store the size of the file. This may not seem like much at first. But what it actually tells you is the maximum size possible for any single file. The fact that we use 4 bytes to store a file size tells us that the largest number that can be represented is 32bits (recall that there are 8 bits per byte). So what is the largest 32bit number? That would be 2^32 - 1. So a file can have a maximum of 2^32 -1 bytes, or 4 Gigabytes. This calculation is obviously done under the assumption that we are using FAT32. 

The last two fields I'd like to take a look at are the filename field and the reserved bytes field. The interesting thing about the filename field is that DOS uses that field to perform undelete. When you erase a file in DOS, you aren't actually erasing the file. All you are doing is changing the first letter of the filename field into a special character. And as far as the file system is concerned, the file isn't there, and the next time a file is written to this cluster, the current file is erased. The way DOS performs an undelete is to simply change that first letter back to something else. That is why when you used undelete in DOS, it always asked for the first letter of the filename before it could restore the file. Mystery solved. 

Now let me just make a quick mention of the reserved fields. The reserved fields didn't do much in FAT16, but it became rather useful in FAT32 and in NTFS. Since FAT32's cluster numbering used 32bit numbers instead of 16bit, as was the case in FAT16, the system needed two extra bytes to accommodate the added digits. Those two bytes were taken out of the reserved field. And in NTFS, compression attributes, some security information was also written into the reserved field of the FAT. 

Before I move on, I'd like to point out a few of the other differences between FAT16 and FAT32. In FAT32, the root directory is unlimited in size. What this means is that you can have as many files and directories in C:\> as you'd like. In the days of FAT16, you could have a maximum of 255 directory entries. That means that if you had normal filenames of 8 letters + 3 extensions, you have a maximum of 255 directories + files. That may seem like more than you'd need to put in the root directory. And it probably is , if you had 8.3 filenames. But in Win95, the system can support long filenames. The trick is that Win95 combines multiple directory entries to support long filenames. So consider a file that's named "My English Paper". That is 16 letters long. So it takes 2 directory entries, at least. Actually, it takes 3 directory entries. It takes 2 for the long filename, and another one for the short 8.3 filename to be compatible with DOS and Win3.1. As you can see, long filenames can quickly deplete directory entries. 

Another nice feature is that FAT32 has better FAT redundancy. Both FAT32 and FAT16 store two copies of the file allocation table on disk. But traditionally, the file system only read from one of them. In FAT32, the system could choose to read from either one, which provides a better failsafe for freak accidents involving corrupt file tables. 

It is apparent that FAT32 is a superior file system then FAT16. Unfortunately, FAT32 is not supported by every operating system. The original version of Windows 95 couldn't read FAT 32. It wasn't until version B (OSR2) did Win95 gain that ability. And all versions of WinNT before 5.0 (named Windows 2000 or short Win2K) could not read FAT32 drives either. 

A table that the operating system uses to locate files on a disk. Due to fragmentation, a file may be divided into many sections that are scattered around the disk. The FAT keeps track of all these pieces. 

In DOS systems, FATs are stored just after the boot sector. 

The FAT system for older versions of Windows 95 is called FAT16, and the one for new versions of Windows 95 and Windows 98 is called FAT32. 

The structure that gives the FAT file system its name is the file allocation table. In order to understand what this important table does, you must first understand how space on the hard disk is allocated under operating systems that use FAT family file systems (including DOS and most versions of Windows.)

Data is stored in individual 512-byte sectors on the hard disk. In theory, it is possible for each file to be allocated to a number of individual sectors, and this is in fact done for some file systems (such as HPFS.) However, for performance reasons, individual sectors are not allocated to files in the FAT system. The reason is that it would take a lot of overhead (time and space) to keep track of pieces of files that were this small: a 10 GB disk partition has 20,000,000 sectors! The hard disk is instead broken into larger pieces called clusters, or alternatively, allocation units. Each cluster contains a number of sectors. Typically, clusters range in size from 2,048 bytes to 32,768 bytes, which corresponds to 4 to 64 sectors each. Clusters and how they work are described in full detail in this section.

The file allocation table is where information about clusters is stored. Each cluster has an entry in the FAT that describes how it used. This is what tells the operating system which parts of the disk are currently used by files, and which are free for use. The FAT entries are used by the operating system to chain together clusters to form files. This chaining process is described here.

The file allocation tables are stored in the area of the disk immediately following the volume boot sector. Each volume actually contains two identical copies of the FAT; ostensibly, the second one is meant to be a backup of sorts in case of any damage to the first copy. Damage to the FAT can of course result in data loss since this is where the record is kept of which parts of the disk contain which files. The idea behind the backup copy is that it could be used in the event that the primary becomes damaged.

In the conventional FAT system, however, the backup FAT system doesn't work too well. The problem is that the two copies are kept right next to each other on the disk, so that if, for example, bad sectors develop on the disk where the first copy of the FAT is stored, chances are pretty good that the second copy will be affected as well. Another problem is that disk utilities frequently duplicate the primary FAT to the backup FAT location. This means that any corruption that arises in the primary FAT may be duplicated to the backup copy before it is noticed.

Under FAT32, some improvements were made to the FAT backup scheme. First, either copy of the FAT can be designated the "primary" and either the "backup". Second, the method by which the FAT is copied from the primary to the backup location can be disabled. The combination of these features allows the second FAT to be protected and used in the event of problems with the first.

NTFS 
(pronounced as separate letters) Short for NT File System, one of the file system for the Windows NT operating system (Windows NT also supports the FAT file system). NTFS has features to improve reliability, such as transaction logs to help recover from disk failures. To control access to files, you can set permissions for directories and/or individual files. NTFS files are not accessible from other operating systems such as DOS. 

For large applications, NTFS supports spanning volumes, which means files and directories can be spread out across several physical disks. 

NTFS (NT file system; sometimes New Technology File System) is the file system that the Windows NT operating system uses for storing and retrieving files on a hard disk. NTFS is the Windows NT equivalent of the Windows 95 file allocation table (FAT) and the OS/2 High Performance File System (HPFS). However, NTFS offers a number of improvements over FAT and HPFS in terms of performance, extendibility, and security.

Notable features of NTFS include:

· Use of a B-tree directory scheme to keep track of file clusters

· Information about a file's clusters and other data is stored with each cluster, not just a governing table (as FAT is)

· Support for very large files (up to 2 to the 64th power or approximately 16 billion bytes in size) 

· An access control list (ACL) that lets a server administrator control who can access specific files

· Integrated file compression
· Support for names based on Unicode
· Support for long file names as well as "8 by 3" names

· Data security on both removable and fixed disks

How NTFS Works

When a hard disk is formatted (initialized), it is divided into partitions or major divisions of the total physical hard disk space. Within each partition, the operating system keeps track of all the files that are stored by that operating system. Each file is actually stored on the hard disk in one or more clusters or disk spaces of a predefined uniform size. Using NTFS, the sizes of clusters range from 512 bytes to 64 kilobytes. Windows NT provides a recommended default cluster size for any given drive size. For example, for a 4 GB (gigabyte) drive, the default cluster size is 4 KB (kilobytes). Note that clusters are indivisible. Even the smallest file takes up one cluster and a 4.1 KB file takes up two clusters (or 8 KB) on a 4 KB cluster system.

The selection of the cluster size is a trade-off between efficient use of disk space and the number of disk accesses required to access a file. In general, using NTFS, the larger the hard disk the larger the default cluster size, since it's assumed that a system user will prefer to increase performance (fewer disk accesses) at the expense of some amount of space inefficiency. 

When a file is created using NTFS, a record about the file is created in a special file, the Master File Table (MFT). The record is used to locate a file's possibly scattered clusters. NTFS tries to find contiguous storage space that will hold the entire file (all of its clusters).


The Unix File System 

The Unix file system (UFS) is a file system used by many Unix and Unix-like operating systems. It is also called the Berkeley Fast File System, the BSD Fast File System or FFS. It is a distant descendant of the original filesystem used by Version 7 Unix.

Unix keeps track of files and directories of files using a file system. When you log in to your Unix account, you are placed in your "home" directory. Your home directory thus becomes your "present working directory" when you log in. In your home directory, you can create files and subdirectories. And in the subdirectories you create, you can create more subdirectories. 

The commands that you issue at the Unix prompt relate to the files and folders and resources available from your present working directory. You certainly use and can refer to resources outside of your current working directory. To understand how this works, you need to know how the Unix file system is structured. 

The filesystem tree 

You can visualize the Unix file system as an upside down tree. At the very top of the tree is the root directory, named "/". This special directory is maintained by the Unix system administrator. Under the root directory, subdirectories organize the files and subdirectories on the system. The names of these subdirectories might be any name at all. Here is a tree diagram of a typical Unix system. 




In the filesystem in this diagram, the root directory / has four subdirectories: bin, tmp, users, and src. In the users subdirectory, there are two subdirectories john and mary. Let's say I am the user john and my home directory is the one labeled john in the diagram. When I log in, I can issue the pwd command: 

$ pwd

/users/john

$ 

Now, if I want to change my present working directory to the directory above my home directory, users, I use the cd command followed by ".." (two periods right together, no spaces). This puts me in the "users" subdirectory. 

$ pwd

/users/john

$ cd ..

$ pwd

/users

$

I can still go "up" further to the root directory (if the system administrator allows it -- it is possible to set the permissions so that I can't "visit" any directory I want): 

$ pwd

/users

$ cd ..

$ pwd

/

$

I now can't go any higher in the tree. Now, I could issue the change directory commands like this to go back to my home directory: 

$ pwd

/

$ cd users

$ pwd

/users

$ cd john

$ pwd

/users/john/ 

$

But there is a shortcut to going back home. Just enter the cd command without anything after it. 

$ pwd

/users/john/ 

$ cd ..

$ pwd

/users

$ cd ..

$ pwd

/

$ cd

$ pwd

/users/john

$

Now, if I am in my home directory, and I want to quickly go to the root directory, I can string together the two periods ".." separated by slashes "/" to go up two levels to the root directory. Like this: 

$ pwd

/users/john/ 

$ cd ../../

$ pwd

/

$

I can string together the two periods "..", the slash marks "/" that separate the directory names, and directory names themselves, to quickly navigate the directory tree. Here is how I can go from my home directory to the tmp directory and back home again: 

$ pwd

/users/john/ 

$ cd ../../tmp

$ pwd

/tmp

$ cd ../users/john

$ pwd

/users/john/ 

$

If the user mary allows it (if she has set her permissions so that I can "visit" her directory), I can go over there like this: 

$ pwd

/users/john

$ cd ../mary

$ pwd

/users/mary

$

Creating a directory 

Now, this is all fine and good, but what if I want to organize my files in some subdirectory of my own. I can create a subdirectory in my home directory using the mkdir command. 

$ pwd

/users/john

$ mkdir portfolio

$ cd portfolio

$ pwd

/users/john/portfolio

$

In this case, I've altered the tree diagram of the file system to be like this: 




Relative and Absolute Pathnames 

Relative Pathnames 

The use of the ".." notation allows me to navigate the directory tree structure. The ".." symbol means "parent directory." Names with ".." in them are relative names because their meaning depends on where they are issued (the present working directory). I can string together several ".." symbols, separated by the / symbol and other directory names, to change directories. For example, if I am in portfolio and want to change to mary, I can do this with a cd command followed by the relative pathname between portfolio and mary like this (first using pwd to show where I am): 

$ pwd

/users/john/portfolio

$ cd ../../mary

$ pwd

/users/mary

$

Directory or file references starting with .. are relative pathnames. 

Directory or file references starting with a directory name are also relative pathnames. For example, if I am in the users directory, the directory reference john/portfolio is a relative pathname: 

$ pwd

/users

$ cd john/portfolio

$ pwd

/users/john/portfolio

$

Absolute Pathnames 

If I string together the unique name of all the intervening subdirectories in the file system to a particular subdirectory, I've created the absolute pathname for that directory. The absolute pathname allows me to switch to a directory no matter what my present working directory is. Absolute pathnames always start with a "/". I can navigate the file system by using absolute pathnames. So I could do something like this: 

$ pwd

/users/john

$ cd /users/mary

$ pwd

/users/mary

$ cd /tmp

$ pwd

/tmp

$ cd /users/john/portfolio

$ pwd

/users/john/portfolio

$ 

Every directory or file on the file system has a unique absolute pathname. Although john may create a file called "test.txt" in his home directory and mary may create a file called test.txt in her home directory, the absolute pathnames of these files are different. John's is called /users/john/test.txt, and Mary's is /users/mary/test.txt. 

The Network File System

NFS, the network filesystem, is probably the most prominent network services using RPC. It allows to access files on remote hosts in exactly the same way as a user would access any local files. This is made possible by a mixture of kernel functionality on the client side (that uses the remote file system) and an NFS server on the server side (that provides the file data). This file access is completely transparent to the client, and works across a variety of server and host architectures. 

NFS offers a number of advantages: 

· Data accessed by all users can be kept on a central host, with clients mounting this directory at boot time. For example, you can keep all user accounts on one host, and have all hosts on your network mount /home from that host. If installed alongside with NIS, users can then log into any system, and still work on one set of files.

· Data consuming large amounts of disk space may be kept on a single host. For example, all files and programs relating to LaTeX and METAFONT could be kept and maintained in one place.

· Administrative data may be kept on a single host. No need to use rcp anymore to install the same stupid file on 20 different machines. 

NFS is largely the work of Rick Sladkey,

 who wrote the NFS kernel code and large parts of the NFS server. The latter is derived from the unfsd user-space NFS server originally written by Mark Shand, and the hnfs Harris NFS server written by Donald Becker. 

Let's have a look now at how NFS works: A client may request to mount a directory from a remote host on a local directory just the same way it can mount a physical device. However, the syntax used to specify the remote directory is different. For example, to mount /home from host vlager to /users on vale, the administrator would issue the following command on vale:

 

mount will then try to connect to the mountd mount daemon on vlager via RPC. The server will check if vale is permitted to mount the directory in question, and if so, return it a file handle. This file handle will be used in all subsequent requests to files below /users. 

When someone accesses a file over NFS, the kernel places an RPC call to nfsd (the NFS daemon) on the server machine. This call takes the file handle, the name of the file to be accessed, and the user's user and group id as parameters. These are used in determining access rights to the specified file. In order to prevent unauthorized users from reading or modifying files, user and group ids must be the same on both hosts. 

On most implementations, the NFS functionality of both client and server are implemented as kernel-level daemons that are started from user space at system boot. These are the NFS daemon (nfsd) on the server host, and the Block I/O Daemon (biod) running on the client host. To improve throughput, biod performs asynchronous I/O using read-ahead and write-behind; also, several nfsd daemons are usually run concurrently. 

The NFS implementation of is a little different in that the client code is tightly integrated in the virtual file system (VFS) layer of the kernel and doesn't require additional control through biod. On the other hand, the server code runs entirely in user space, so that running several copies of the server at the same time is almost impossible because of the synchronization issues this would involve. NFS currently also lacks read-ahead and write-behind, but Rick Sladkey plans to add this someday.

 

The biggest problem with the NFS code is that the kernel as of version 1.0 is not able to allocate memory in chunks bigger than 4K; as a consequence, the networking code cannot handle datagrams bigger than roughly 3500 bytes after subtracting header sizes etc. This means that transfers to and from NFS daemons running on systems that use large UDP datagrams by default (e.g. 8K on SunOS) need to be downsized artificially. This hurts performance badly under some circumstances.

 This limit is gone in late -1.1 kernels, and the client code has been modified to take advantage of this. 

The Network File System (NFS) is a client/server application that lets a computer user view and optionally store and update file on a remote computer as though they were on the user's own computer. The user's system needs to have an NFS client and the other computer needs the NFS server. Both of them require that you also have TCP/IP installed since the NFS server and client use TCP/IP as the program that sends the files and updates back and forth. (However, the User Datagram Protocol, UDP, which comes with TCP/IP, is used instead of TCP with earlier versions of NFS.) 

NFS was developed by Sun Microsystems and has been designated a file server standard. Its protocol uses the Remote Procedure Call (RPC) method of communication between computers. You can install NFS on Windows 95 and some other operating systems using products like Sun's Solstice Network Client. 

Using NFS, the user or a system administrator can mount all or a portion of a file system (which is a portion of the hierarchical tree in any file directory and subdirectory, including the one you find on your PC or Mac). The portion of your file system that is mounted (designated as accessible) can be accessed with whatever privileges go with your access to each file (read-only or read-write). 

NFS has been extended to the Internet with WebNFS, a product and proposed standard that is now part of Netscape's Communicator browser. WebNFS offers what Sun believes is a faster way to access Web pages and other Internet files. 

